Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.069
Filtrar
2.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503567

RESUMO

AIMS: Determine the wheat rhizosphere competence of Trichoderma gamsii strain A5MH and in planta suppression of the Pythium root and Fusarium crown rot pathogens Globisporangium irregulare and Fusarium pseudograminearum. METHODS AND RESULTS: Wheat was continuously cropped (eight years) at a minimum tillage, low growing season rainfall (GSR ≤ 170 mm) site shown as highly conducive to Pythium root and Fusarium crown rots. Root isolation frequency (RIF) and qPCR were used to determine the rhizosphere dynamics of strain A5MH and the target pathogens at tillering, grain harvest, and in postharvest stubble over the final 2 years. Strain A5MH actively colonized the wheat rhizosphere throughout both growing seasons, had high root abundance at harvest [log 4.5 genome copies (GC) g-1] and persisted in standing stubble for at least 293-d postinoculation. Globisporangium irregulare was most abundant in roots at tillering, whereas F. pseudograminearum was only abundant at harvest and up to 9-fold greater in the drier, second year (GSR 105 mm). Strain A5MH decreased RIF of both pathogens by up to 40%, root abundance of G. irregulare by 100-fold, and F. pseudogaminearum by 700-fold, but was ineffective against crown rot in the second year when pathogen abundance was >log 6.0 GC g-1 root. Strain A5MH increased crop emergence and tillering biomass by up to 40%. CONCLUSIONS: Further trials are required to determine if the A5MH-induced pathogen suppression translates to yield improvements in higher rainfall regions where non-cereal rotations reduce crown rot inoculum.


Assuntos
Fusarium , Hypocreales , Pythium , Estações do Ano , Triticum , Fusarium/genética , Rizosfera , Doenças das Plantas/prevenção & controle , Grão Comestível
3.
BMJ Case Rep ; 17(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499351

RESUMO

Pythiosis is caused due to a filamentous eukaryotic micro-organism called Pythium insidiosum and the disease occurs commonly in horses and cattle. Subcutaneous pythiosis infection in humans is rare with no clear clinical guidelines for treatment. We present a case of a man in his 20s with non-resolving ulcers noted over lower extremity after exposure to swamp water draining animal remains. The patient received several courses of oral antibiotics with no improvement in symptoms before getting admitted to our institution. A diagnosis of subcutaneous pythiosis was made after deep wound culture following debridement detected P. insidiosum by use of PCR. Due to the rare incidence of such infection in humans and no clear guidelines available for treatment, the case was discussed with infectious disease specialists outside our institution and with veterinary physicians. An emergent approval for use of immunotherapy in conjunction with surgical debridement and antimicrobials was obtained from Food and Drug administration. The patient underwent successful treatment of infection and skin graft following treatment.


Assuntos
Anti-Infecciosos , Pitiose , Pythium , Masculino , Humanos , Animais , Cavalos , Bovinos , Pitiose/diagnóstico , Pitiose/terapia , Desbridamento , Imunoterapia , Extremidade Inferior
4.
PLoS One ; 19(2): e0298514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408078

RESUMO

The use of fungicides to manage disease has led to multiple environmental externalities, including resistance development, pollution, and non-target mortality. Growers have limited options as legacy chemistry is withdrawn from the market. Moreover, fungicides are generally labeled for traditional soil-based production, and not for liquid culture systems. Biocontrol agents for disease management are a more sustainable and environmentally friendly alternative to conventional agroprotectants. Pythium ultimum is a soil borne oomycete plant pathogen with a broad taxonomic host range exceeding 300 plants. Cucumber seedlings exposed to P. ultimum 1 day after a protective inoculation with bacterial endophyte accession IALR1619 (Pseudomonas sp.) recorded 59% survival; with the control assessed at 18%. When the pathogen was added 5 days post endophyte inoculation, 74% of the seedlings treated survived, compared to 36% of the control, indicating a longer-term effect of IALR1619. Under hydroponic conditions, IALR1619 treated leaf type lettuce cv. 'Cristabel' and Romaine cv. 'Red Rosie' showed 29% and 42% higher shoot fresh weight compared to their controls, respectively. Similar results with less growth decline were observed for a repeat experiment with IALR1619. Additionally, an experiment on hydroponic lettuce in pots with perlite was carried out with a mixture of P. ultimum and P. dissotocum after IALR1619 inoculation. The endophyte treated 'Cristabel' showed fresh weight gain, but the second cultivar 'Pensacola' yielded no increase. In summary, the endophyte IALR1619 provided short term as well as medium-term protection against Pythium blight in cucumber seedlings and may be used as an alternative to conventional fungicides in a greenhouse setting. This study also demonstrated the potential of ALR1619 as a biocontrol agent against Pythium blight in hydroponic lettuce.


Assuntos
Cucumis sativus , Fungicidas Industriais , Pythium , Pseudomonas , Cucumis sativus/microbiologia , Alface , Hidroponia , Plântula , Plantas , Solo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
5.
J Equine Vet Sci ; 134: 105030, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342358

RESUMO

Cutaneous pythiosis is a life-threatening infectious disease. Low-level laser therapy (LLLT) and ozone (O3) have been used individually in the treatment of infected wounds. The goals of the study were a) to characterize the antimicrobial action of the photo-ozone therapy (LLLT-O3) against equine Pythium insidiosum, and b) to assess the cytotoxic potential of the LLLT-O3 in keratinocytes. Specimens of pathogen were isolated from 10 horses. After culturing, 120 hyphae plugs were distributed among four groups (n=30 hyphae plugs/group): LLLT (laser irradiation for 160 sec;), O3 (exposition to O3 for 15 min;), LLLT-O3 (LLLT and O3 treatments in sequence) and control (untreated plugs). The hyphae growth was measured during the first 14 days post-treatment. Where there was an absence of hyphae growth, the plug was recultured for an additional 7 days. The cytotoxic potential of the treatments against HaCaT keratinocytes was assessed by colorimetric assays. The LLLT-O3 and O3 treatments inactivated, respectively, 92.3% (28/30) and 30% (9/30) of the samples. No growth was detected after 7 days reculture of inactivated hyphae plugs on new media. Hyphae growth was visualized in 100% of the control and LLLT hyphae plugs. The viability of HaCaT cells was not affected by the isolated treatments (LLLT and O3), while the LLLT-O3 showed slight cytotoxic effect (20%) when compared to the control group (P<0.05). Photo-ozone therapy inactivated equine P. insidiosum hyphae with minimal cytotoxicity in skin cells in vitro.


Assuntos
Doenças dos Cavalos , Pitiose , Pythium , Animais , Cavalos , Pitiose/tratamento farmacológico , Doenças dos Cavalos/tratamento farmacológico
6.
J Agric Food Chem ; 72(9): 4649-4657, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38383306

RESUMO

Oomycetes are well-known phytopathogens that seriously threaten many important crops worldwide. In this study, the endophytic actinobacterium Streptomyces sp. NEAU-S7GS2 demonstrated significant antagonistic activity against Phytophthora and Pythium and showed a potent biocontrol effect on suppression of soybean phytophthora root rot and pepper phytophthora blight. Two compounds were subsequently isolated as the main active components by bioassay-guided fractionation and identified as lydicamycins A and B. These two compounds showed high antioomycete activity against Phytophthora and Pythium with EC50 values of 0.73-2.67 µg/mL, which are equal to or lower than those of commercialized drug metalaxyl. In vivo bioassay using detached leaves demonstrated that lydicamycin A had a better control efficiency against soybean phytophthora root rot than metalaxyl. Taken together, these results suggest that the biocontrol agent Streptomyces sp. NEAU-S7GS2 and lydicamycins have the potential to be developed as promising pesticides to control diseases caused by oomycetes.


Assuntos
Phytophthora , Pythium , Streptomyces , Soja , Produtos Agrícolas , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Álcoois Graxos , Pirrolidinonas
7.
Hum Vaccin Immunother ; 20(1): 2304372, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38314761

RESUMO

The mechanisms of Pythium insidiosum-antigen (PIA) immunotherapy activating a patient's immune system are unknown. We evaluated the interleukin-8 (IL-8) serum levels during P. insidiosum infection and after vaccination with PIA in vascular pythiosis cases. Furthermore, we studied the anti-P. insidiosum activity of neutrophils stimulated with various concentrations of PIA ex vivo in 3 strains of P. insidiosum isolated from vascular pythiosis patients. IL-8 serum levels were evaluated using the ELISA technique. We assessed the effect of PIA-stimulated neutrophils on the viability of zoospores using MTT assay, visualized neutrophil extracellular trap (NET) formation via microscopy, and measured the levels of double-stranded DNA (dsDNA) using PicoGreen dsDNA quantitation assay in 3 strains of P. insidiosum isolated from vascular pythiosis patients. Serum levels of IL-8 gradually lowered from the early to the end phases of vaccination with PIA among the surviving group of vascular pythiosis cases. Neutrophils stimulated with 0.01 µg/ml PIA reduced zoospore viability significantly compared to PIA-unstimulated neutrophils for strain 1 and strain 3 (p < .05). Neutrophils stimulated with 0.01, 0.1, 1, and 10 µg/ml PIA exhibited significantly lower zoospore viability than PIA-unstimulated neutrophils for strain 2 (p < .05). IL-8 can be used as a biomarker for monitoring vascular pythiosis cases treated with the PIA vaccine. Also, anti-P. insidiosum activity of PIA-stimulated neutrophils was probably due to the disruption of cellular activity in zoospores rather than the mechanisms based on the formation of NETs.


Assuntos
Pitiose , Pythium , Animais , Humanos , Interleucina-8/farmacologia , Pythium/genética , Pitiose/terapia , Neutrófilos , Ensaio de Imunoadsorção Enzimática
8.
Microbiol Spectr ; 12(2): e0162023, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38179943

RESUMO

Pythiosis is a life-threatening infectious disease caused by the oomycete Pythium insidiosum. Clinical manifestations of pythiosis include an eye, blood vessel, skin, or gastrointestinal tract infection. Pythiosis has been increasingly reported worldwide, with an overall mortality rate of 28%. Radical surgery is required to save patients' lives due to the limited efficacy of antimicrobial drugs. Effective medical treatments are urgently needed for pythiosis. This study aims to find anti-P. insidiosum agents by screening 17 agricultural fungicides that inhibit plant-pathogenic oomycetes and validating their efficacy and safety. Cyazofamid outperformed other fungicides as it can potently inhibit genetically diverse P. insidiosum isolates while exhibiting minimal cellular toxicities. The calculated therapeutic scores determined that the concentration of cyazofamid causing significant cellular toxicities was eight times greater than the concentration of the drug effectively inhibiting P. insidiosum. Furthermore, other studies showed that cyazofamid exhibits low-to-moderate toxicities in animals. The mechanism of cyazofamid action is likely the inhibition of cytochrome b, an essential component in ATP synthesis. Molecular docking and dynamic analyses depicted a stable binding of cyazofamid to the Qi site of the P. insidiosum's cytochrome b orthologous protein. In conclusion, our search for an effective anti-P. insidiosum drug indicated that cyazofamid is a promising candidate for treating pythiosis. With its high efficacy and low toxicity, cyazofamid is a potential chemical for treating pythiosis, reducing the need for radical surgeries, and improving recovery rates. Our findings could pave the way for the development of new and effective treatments for pythiosis.IMPORTANCEPythiosis is a severe infection caused by Pythium insidiosum. The disease is prevalent in tropical/subtropical regions. This infectious condition is challenging to treat with antifungal drugs and often requires surgical removal of the infected tissue. Pythiosis can be fatal if not treated promptly. There is a need for a new treatment that effectively inhibits P. insidiosum. This study screened 17 agricultural fungicides that target plant-pathogenic oomycetes and found that cyazofamid was the most potent in inhibiting P. insidiosum. Cyazofamid showed low toxicity to mammalian cells and high affinity to the P. insidiosum's cytochrome b, which is involved in energy production. Cyazofamid could be a promising candidate for the treatment of pythiosis, as it could reduce the need for surgery and improve the survival rate of patients. This study provides valuable insights into the biology and drug susceptibility of P. insidiosum and opens new avenues for developing effective therapies for pythiosis.


Assuntos
Fungicidas Industriais , Imidazóis , Pitiose , Pythium , Sulfonamidas , Animais , Humanos , Pythium/metabolismo , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/uso terapêutico , Pitiose/tratamento farmacológico , Pitiose/microbiologia , Simulação de Acoplamento Molecular , Citocromos b/metabolismo , Mamíferos
9.
J Mycol Med ; 34(1): 101460, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266397

RESUMO

This study evaluated the repositioning of the ketolide antibacterial telithromycin (TLT) against the oomycete Pythium insidiosum and verified the combination of TLT and the antimicrobials azithromycin (AZM) and amorolfine hydrochloride (AMR), which have known anti-P. insidiosum activity. Susceptibility tests of P. insidiosum isolates (n = 20) against the drugs were carried out according to CLSI protocol M38-A2, and their combinations were evaluated using the checkerboard microdilution method. The minimum inhibitory concentrations were 0.5-4 µg/mL for TLT, 2-32 µg/mL for AZM, and 16-64 µg/mL for AMR. For the TLT+AZM combination, 52.75 % of interactions were indifferent, 43.44 % were antagonistic, and 9.70 % were synergistic. As for interactions of the TLT+AMR combination, 60.43 % were indifferent, 39.12 % were antagonistic, and 10.44 % synergistic interactions. This study is the first to evaluate the repositioning of the antibacterial TLT against mammalian pathogenic oomycetes, and our results show that its isolated action is superior to its combinations with either AZM or AMR. Therefore, we recommend including TLT in future research to evaluate therapeutic approaches in different clinical forms of human and animal pythiosis.


Assuntos
Cetolídeos , Morfolinas , Pitiose , Pythium , Animais , Humanos , Antifúngicos/farmacologia , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Cetolídeos/farmacologia , Cetolídeos/uso terapêutico , Antibacterianos/farmacologia , Pitiose/tratamento farmacológico , Pitiose/microbiologia , Mamíferos
10.
Plant Sci ; 340: 111972, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176527

RESUMO

Little is known about the molecular basis of host defense in resistant wild species Zingiber zerumbet (L.) Smith against the soil-borne, necrotrophic oomycete pathogen Pythium myriotylum Drechsler, which causes the devastating soft rot disease in the spice crop ginger (Zingiber officinale Roscoe). We investigated the pattern of host defense between Z. zerumbet and ginger in response to P. myriotylum inoculation. Analysis of gene expression microarray data revealed enrichment of phenylpropanoid biosynthetic genes, particularly lignin biosynthesis genes, in pathogen-inoculated Z. zerumbet compared to ginger. RT-qPCR analysis showed the robust activation of phenylpropanoid biosynthesis genes in Z. zerumbet, including the core genes PAL, C4H, 4CL, and the monolignol biosynthesis and polymerization genes such as CCR, CAD, C3H, CCoAOMT, F5H, COMT, and LAC. Additionally, Z. zerumbet exhibited the accumulation of the phenolic acids including p-coumaric acid, sinapic acid, and ferulic acid that are characteristic of the cell walls of commelinoid monocots like Zingiberaceae and are involved in cell wall strengthening by cross linking with lignin. Z. zerumbet also had higher total lignin and total phenolics content compared to pathogen-inoculated ginger. Phloroglucinol staining revealed the enhanced fortification of cell walls in Z. zerumbet, specifically in xylem vessels and surrounding cells. The trypan blue staining indicated inhibition of pathogen growth in Z. zerumbet at the first leaf whorl, while ginger showed complete colonization of the pith within 36 h post inoculation (hpi). Accumulation of salicylic acid (SA) and induction of SA regulator NPR1 and the signaling marker PR1 were observed in Z. zerumbet. Silencing of PAL in Z. zerumbet through VIGS suppressed downstream genes, leading to reduced phenylpropanoid accumulation and SA level, resulting in the susceptibility of plants to P. myriotylum. These findings highlight the essential role of PAL-dependent mechanisms in resistance against P. myriotylum in Z. zerumbet. Moreover, our results suggest an unconventional role for SA in mediating host resistance against a necrotroph. Targeting the phenylpropanoid pathway could be a promising strategy for the effective management of P. myriotylum in ginger.


Assuntos
Pythium , Gengibre , Zingiberaceae , Pythium/genética , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/farmacologia , Lignina , Ácido Salicílico/farmacologia , Zingiberaceae/genética
11.
JAMA Ophthalmol ; 141(12): e232948, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38127083

RESUMO

This case report describes a diagnosis of Curvularia fungal keratitis in a man aged 60 years who presented with a paracentral corneal infiltrate in the right eye with tentacular projections.


Assuntos
Úlcera da Córnea , Ceratite , Pythium , Humanos , Úlcera da Córnea/diagnóstico , Úlcera da Córnea/tratamento farmacológico , Ceratite/diagnóstico , Ceratite/tratamento farmacológico , Ceratite/microbiologia
12.
BMC Res Notes ; 16(1): 316, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932861

RESUMO

OBJECTIVES: Pythium insidiosum causes a difficult-to-treat infectious condition called pythiosis, with high morbidity and mortality. So far, genome data of at least 10 strains of P. insidiosum, primarily classified in the phylogenetic clades I and II, have been sequenced using various next-generation sequencing platforms. The MGI short-read platform was employed to obtain genome data of 2 clade-III strains of P. insidiosum (recently reclassified as Pythium periculosum) from patients in Thailand and the United States. This work is a part of our attempt to generate a comprehensive genome database from diverse pathogen strains. DATA DESCRIPTION: A 150-bp paired-end library was prepared from a gDNA sample of P. insidiosum (P. periculosum) strains Pi057C3 and Pi050C3 (also known as ATCC90586) to generate draft genome sequences using an MGISEQ-2000RS sequencer. As a result, for the strain Pi057C3, we obtained a 42.5-Mb assembled genome (164x coverage) comprising 14,134 contigs, L50 of 241, N50 of 45,748, 57.6% CG content, and 12,147 ORFs. For the strain Pi050C3, we received a 43.3-Mb draft genome (230x coverage) containing 14,511 contigs, L50 of 245, N50 of 45,208, 57.7% CG content, and 12,249 ORFs. The genome sequences have been deposited in the NCBI/DDBJ databases under the accession numbers JAKCXM000000000.1 (strain Pi057C3) and JAKCXL000000000.1 (strain Pi050C3).


Assuntos
Pitiose , Pythium , Animais , Humanos , Filogenia , Pythium/genética , Genoma , Biblioteca Gênica
13.
Vet Res ; 54(1): 102, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919808

RESUMO

The oomycete Pythium flevoense was diagnosed as the cause of dermatitis in a young adult female harbour porpoise (Phocoena phocoena) that had been trapped in a pound net in a temperate saltwater environment. Disease from Pythium sp. infection-pythiosis-is infrequently diagnosed in humans, horses, dogs, cattle, and few other mammalian species. Pythiosis is typically associated with exposure to tropical or subtropical freshwater conditions, and typically caused by Pythium insidiosum. However, until now, pythiosis has been reported in neither marine mammals nor temperate saltwater conditions, and P. flevoense is not known as a cause of pythiosis in mammals. This porpoise developed generalised dermatitis despite treatment and euthanasia was necessary. Histopathological evaluation revealed a chronic active erosive dermatitis, with intralesional hyphae morphologically consistent with a Pythium sp. PCR analysis and sequencing of affected skin matched Pythium flevoense with a 100% similarity to the reference strain. Additional diagnostics excluded other pathogens. Based on this case report, P. flevoense needs to be considered as a mammalian pathogen. Furthermore, harbour porpoises and possibly other marine mammals may be at risk of infection with P. flevoense, and pythiosis should be included in the differential diagnosis of dermatitis in marine mammals.


Assuntos
Dermatite , Phocoena , Pitiose , Pythium , Animais , Feminino , Dermatite/veterinária , Pitiose/diagnóstico
14.
Optom Vis Sci ; 100(12): 887-894, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019963

RESUMO

SIGNIFICANCE: This case series is the first to illustrate mixed infection from Pythium sp. and fungal species in corneal ulcer. PURPOSE: This case series aimed to alert all toward the possibility of both Pythium sp. and fungal species infection in case of nonresponding corneal ulcer treated with either antifungals or antipythium drugs alone. Increased suspicion of mixed infection in case of nonresponding fungal/ Pythium keratitis may facilitate early and prompt management. CASE REPORTS: Six patients presented with signs of either fungal or Pythium keratitis. They underwent ophthalmological examinations, smear examinations, cultures, and polymerase chain reaction (PCR). Therapeutic penetrating keratoplasty was performed in cases where symptoms worsened after treatment with either antifungal or antipythium drugs. The half corneal button (HCB) was shared for histopathological and microbiological examinations. In the first case, smear examination from corneal scraping (CS) revealed Pythium -like filaments, which were confirmed with PCR; however, Aspergillus nidulans grew in culture. In the second case, iodine-potassium iodide (IKI) staining was positive for Pythium ; however, PCR was positive for both Pythium and fungus, which was further confirmed by DNA sequencing. In the third case, IKI staining and HCB were positive for Pythium ; however, PCR was positive for fungus, which was identified as Candida saitoana with DNA sequencing. In the fourth case, Pythium grew in the CS culture; however, Candida sp. grew in the HCB culture. In the fifth case, Cladosporium sp. grew in culture from CS; however, Pythium insidiosum grew from the anterior chamber exudate after therapeutic penetrating keratoplasty. In the sixth case, smear examination revealed septate fungal filaments, and Cladosporium sp. grew in culture; however, HCB on histopathological examination showed features of Pythium keratitis. CONCLUSIONS: In unresponsive cases of Pythium or fungal keratitis, diagnostic modalities such as IKI and PCR should be implemented as a routine practice, in addition to smears and cultures.


Assuntos
Coinfecção , Úlcera da Córnea , Infecções Oculares Fúngicas , Ceratite , Pitiose , Pythium , Animais , Humanos , Úlcera da Córnea/diagnóstico , Úlcera da Córnea/tratamento farmacológico , Pythium/genética , Coinfecção/tratamento farmacológico , Pitiose/diagnóstico , Pitiose/microbiologia , Pitiose/terapia , Ceratite/diagnóstico , Ceratite/microbiologia , Ceratoplastia Penetrante , Antifúngicos/uso terapêutico , Infecções Oculares Fúngicas/diagnóstico , Infecções Oculares Fúngicas/tratamento farmacológico
15.
Indian J Ophthalmol ; 71(12): 3584-3586, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991287

RESUMO

Pythium insidiosum keratitis (PIK) is a devastating corneal infection resulting in blindness in a large number of cases. Clinically and morphologically, it closely mimics fungal keratitis, and hence is also labeled as "parafungus." Although many clinical studies have documented evidence regarding the virulence of microorganism, and anatomical and functional outcomes, it remains a clinical challenge and diagnostic dilemma for most clinicians. Till today, PIK is being diagnosed and treated with certainty at only limited centers across the globe. But the question is why this is so? Taking this as the research question, this section on current ophthalmology aims to highlight the understanding of barriers to diagnosing and treating PIK, the suggestions to improve diagnosis and treatment, and the future prospects.


Assuntos
Úlcera da Córnea , Ceratite , Pitiose , Pythium , Animais , Humanos , Pitiose/diagnóstico , Pitiose/terapia , Ceratite/diagnóstico , Ceratite/terapia , Ceratite/microbiologia , Úlcera da Córnea/diagnóstico , Ceratoplastia Penetrante
16.
Mycologia ; 115(6): 768-786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796448

RESUMO

The Globisporangium ultimum (formerly Pythium ultimum) species complex was previously composed of two morphological varieties: var. ultimum and var. sporangiiferum. Prior attempts to resolve this morphology-based species complex using molecular techniques have been inconclusive or conflicting. The increased availability of sequenced genomes and isolates identified as G. ultimum var. ultimum and var. sporangiiferum has allowed us to examine these relationships at a higher resolution and with a broader scope than previously possible. Using comparative genomics, we identified highly variable gene regions and designed primers for four new protein-coding genes for phylogenetics. These were then used alongside three known markers to generate a nuclear multigene genealogy of the species complex. From a collection of 163 isolates belonging to the target taxa, a subset of 29 was chosen to be included in this study (verified with nuclear rDNA internal transcribed spacer 1 [ITS1] and mitochondrial cytochrome c oxidase subunit 1 [cox1] sequences). Seventeen isolates of var. ultimum were selected to be representative of variations in genotype, morphology, and geographic collection location. The 12 isolates of var. sporangiiferum included all available specimens identified either morphologically (in previous studies) or through sequence similarity with ITS1 and cox1. Based on the fulfillment of reciprocal monophyly and observed genealogical concordance under the genealogical concordance phylogenetic species recognition, we determined that the Globisporangium ultimum species complex is composed of four genetically distinct species: Globisporangium ultimum, Globisporangium sporangiiferum, Globisporangium solveigiae, and Globisporangium bothae.


Assuntos
Pythium , Pythium/genética , Filogenia , Sequência de Bases , Genótipo , DNA Ribossômico
17.
BMC Res Notes ; 16(1): 271, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833791

RESUMO

OBJECTIVES: Pythium insidiosum is the causative agent of pythiosis, a difficult-to-treat condition, in humans and animals worldwide. Biological information about this filamentous microorganism is sparse. Genomes of several P. insidiosum strains were sequenced using the Illumina short-read NGS platform, producing incomplete genome sequence data. PacBio long-read platform was employed to obtain a better-quality genome of Pythium insidiosum. The obtained genome data could promote basic research on the pathogen's biology and pathogenicity. DATA DESCRIPTION: gDNA sample was extracted from the P. insidiosum strain Pi-S for whole-genome sequencing by PacBio long-read NGS platform. Raw reads were assembled using CANU (v2.1), polished using ARROW (SMRT link version 5.0.1), aligned with the original raw PacBio reads using pbmm2 (v1.2.1), consensus sequence checked using ARROW, and gene predicted using Funannotate pipeline (v1.7.4). The genome completion was assessed using BUSCO (v4.0.2). As a result, 840 contigs (maximum length: 1.3 Mb; N50: 229.9 Kb; L50: 70) were obtained. Sequence assembly showed a genome size of 66.7 Mb (178x coverage; 57.2% G-C content) that contained 20,375 ORFs. A BUSCO-based assessment revealed 85.5% genome completion. All assembled contig sequences have been deposited in the NCBI database under the accession numbers BBXB02000001 - BBXB02000840.


Assuntos
Pitiose , Pythium , Animais , Humanos , Tamanho do Genoma , Pitiose/genética , Pythium/genética , Pythium/isolamento & purificação , População do Sudeste Asiático , Sequenciamento Completo do Genoma , Tailândia
18.
J Mycol Med ; 33(4): 101430, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678114

RESUMO

INTRODUCTION: Pythiosis is a high-mortality infectious condition in humans and animals. The etiologic agent is Pythium insidiosum. Patients present with an ocular, vascular, cutaneous/subcutaneous, or gastrointestinal infection. Antifungal medication often fails to fight against P. insidiosum. The effective treatment is limited to radical surgery, resulting in organ loss. Fatal outcomes are observed in advanced cases. Pythiosis needs to be studied to discover novel methods for disease control. Genome data of P. insidiosum is publicly available. However, information on P. insidiosum biology and pathogenicity is still limited due to the lack of a cost-effective animal model and molecular tools. MATERIALS AND METHODS: We aimed to develop a high-efficiency protocol for generating P. insidiosum protoplast, and used it to set up an animal model, in vitro drug susceptibility assay, and DNA transformation for this pathogen. RESULTS: P. insidiosum protoplast was successfully generated to establish a feasible pythiosis model in embryonic chicken eggs and an efficient in vitro drug susceptibility assay. DNA transformation is a critical method for gene manipulation necessary for functional genetic studies in pathogens. Attempts to establish a DNA transformation method for P. insidiosum using protoplast were partly successful. Significant work needs to be done for genetically engineering a more robust selection marker to generate stable transformants at increased efficiency. CONCLUSION: This study is the first to report an efficient P. insidiosum protoplast production for clinical and research applications. Such advances are crucial to speeding up the pathogen's biology and pathogenicity exploration.


Assuntos
Pitiose , Pythium , Animais , Humanos , Pythium/genética , Virulência , Pitiose/microbiologia , Protoplastos , DNA/farmacologia , DNA/uso terapêutico
19.
Braz J Microbiol ; 54(4): 2603-2607, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37702922

RESUMO

In this study, we investigate the ability of Pythium insidiosum to form biofilms across various substrates and the antibiofilm efficacy of 8-hydroxyquinoline derivatives (8-HQs). Biofilms of P. insidiosum were cultured on polystyrene plates, contact lenses, and horsehair. We provide the first evidence of P. insidiosum's biofilm-forming capability, thus considerably expanding our understanding of its transmission and pathogenesis. Our results demonstrate that 8-HQs effectively inhibit biofilm formation and eradicate pre-existing biofilms, underscoring their potential as a novel treatment strategy for pythiosis, a disease currently lacking a gold-standard treatment. This finding has particular relevance for ocular pythiosis associated with contact lens usage and potential infection sources in animals. Our results contribute to the scientific knowledge base and directly impact innovative therapeutic interventions' development.


Assuntos
Pitiose , Pythium , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Pitiose/tratamento farmacológico , Pitiose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...